MA10207 Analysis 1 - Semester 1, 2021/22 Problem Sheet Week 7- Solutions

1. Find $\limsup_{n\to\infty} a_n$ and $\liminf_{n\to\infty} a_n$ for the following sequences

a.
$$a_n = (-1)^n + \sin(2\pi n), \quad b. \quad a_n = (-1)^n \frac{2n}{1+n}.$$

Answer. a. Since $\sin(2\pi n) = 0$ for all n, $a_n = (-1)^n$. Since $\sup_{n \ge k} (-1)^n = 1$, then $\limsup_{n \to \infty} a_n = \lim_{k \to \infty} \sup_{n \ge k} (-1)^n = 1$. Since $\inf_{n \ge k} (-1)^n = -1$, then $\liminf_{n \to \infty} a_n = \lim_{k \to \infty} \inf_{n \ge k} (-1)^n = -1$.

- b. For any k let $S_k = \{a_n : n \ge k\}$.
- Observe that $\lim_{n\to\infty} \frac{2n}{1+n} = 2$.
- We claim that $\inf S_k = -2$.

For any $n \ge k$,

$$a_n = (-1)^n \frac{2n}{n+1} \ge -\frac{2n}{n+1} > -2$$

since $\frac{2n}{n+1} < 2$ for all n.

Assume there exists a lower bound t for S_k with t > -2. We can take t < 0. Then for all $n \ge k$ we have $a_n \ge t$. We assume n is odd. Then

$$a_n \ge t \quad \Leftrightarrow \quad (-1)^n \frac{2n}{n+1} \ge t \quad \Leftrightarrow \quad -\frac{2n}{n+1} \ge t$$
$$-(2+t)n \ge t \quad \Leftrightarrow \quad n \le -\frac{t}{t+2},$$

where in the latter inequality we used that -(2 + t) < 0. This is a contradiction with the Archimedean Principle. Thus there is no lower bound to S_k greater than -2. This proves that $\inf_k S_k = -2$. Thus $\liminf_{n\to\infty} a_n = \lim_{k\to\infty} \inf_k S_k = -2$.

We claim that $\sup S_k = 2$.

For any $n \ge k$,

$$a_n = (-1)^n \frac{2n}{n+1} \le \frac{2n}{n+1} < 2.$$

Assume there exists an upper bound s for S_k with s < 2. We can take s > 0. Then for all $n \ge k$ we have $a_n \le s$. We assume n is even. Then

$$a_n \leq s \quad \Leftrightarrow \quad \frac{2n}{n+1} \leq s \quad \Leftrightarrow \quad (2-s)n \leq s \quad \Leftrightarrow \quad n \leq \frac{s}{2-s},$$

where in the latter inequality we used that 2 - s > 0. This is a contradiction with the Archimedean Principle. Thus there is no upper bound to S_k less than 2. This proves that $\sup_k S_k = 2$. Thus $\limsup_{n\to\infty} a_n = \lim_{k\to\infty} \sup_k S_k = 2$.

2. Let $(a_n)_n$ and $(b_n)_n$ be two sequence. Assume there exists $M \in \mathbb{N}$ such that

$$a_n \leq b_n \quad \forall \quad n \geq M.$$

Prove that

$$\liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} b_n, \quad \text{and} \quad \limsup_{n \to \infty} a_n \le \limsup_{n \to \infty} b_n.$$

Answer. For any $k \in \mathbb{N}$, we consider the sets $S_k = \{a_n : n \ge k\}$ and $T_k = \{b_n : n \ge k\}$.

Let $k \ge M$. Then $a_n \le b_n$ for all $n \ge k$ and

$$\inf_k S_k \le a_n \le b_n$$

for all $n \ge k$. Hence

$$\inf_k S_k \le b_n, \quad \forall n \ge k.$$

Thus $\inf_k S_k \leq \inf_k T_k$ for all $k \geq M$. Henceforth $\liminf_{n \to \infty} a_n \leq \liminf_{n \to \infty} b_n$. Besides,

$$\sup_{k} T_k \ge b_n \ge a_n$$

for all $n \ge k$. Observe then that

$$\sup_{k} T_k \ge a_n, \quad \forall n \ge k.$$

Thus $\sup_k T_k \ge \sup_k S_k$ for all $k \ge M$. Henceforth $\limsup_{n \to \infty} a_n \le \limsup_{n \to \infty} b_n$.

3. Compute

a.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$
, b. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$.

Answer. a. Let $n \in \mathbb{N}$ and consider

$$S_n = \sum_{k=1}^n \frac{1}{4k^2 - 1}.$$

Since

$$\frac{1}{4k^2 - 1} = \frac{1}{2} \left[\frac{1}{2k - 1} - \frac{1}{2k + 1} \right]$$

we get

$$S_n = \frac{1}{2} \sum_{k=1}^n \left[\frac{1}{2k-1} - \frac{1}{2k+1} \right]$$

= $\frac{1}{2} \left[1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots \frac{1}{2n-1} - \frac{1}{2n+1} \right]$
= $\frac{1}{2} \left[1 - \frac{1}{2n+1} \right].$

Hence, by the Algebra of Limits,

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{2} [1 - \frac{1}{2n+1}] \right) = \frac{1}{2}.$$

b. Let $n \in \mathbb{N}$ and consider

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}.$$

Since

$$\frac{1}{k(k+1)(k+2)} = \frac{A}{k(k+1)} + \frac{B}{(k+1)(k+2)} \quad \Leftrightarrow \quad A = \frac{1}{2}, \ B = -\frac{1}{2},$$

we have

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$$

= $\frac{1}{2} \sum_{k=1}^n \left[\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)}\right]$
= $\frac{1}{2} \left[\frac{1}{2} - \frac{1}{6} + \frac{1}{6} - \frac{1}{12} + \dots + \frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)}\right]$
= $\frac{1}{2} \left[\frac{1}{2} - \frac{1}{(n+1)(n+2)}\right].$

We then conclude that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{(n+1)(n+2)} \right] \right] = \frac{1}{4}.$$

4. a. Prove that if $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \frac{a_n}{n^2}$ converges.

b. Prove that if $\lim_{n\to\infty} a_n = 1$, then $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{n}}$ diverges.

Answer. a. Let $S_n = \sum_{k=1}^n \frac{a_k}{k^2}$ be the sequence of partial sums associated to the series $\sum_{n=1}^{\infty} \frac{a_n}{n^2}$. If we prove that the sequence $(S_n)_n$ is convergent, then $\sum_{n=1}^{\infty} \frac{a_n}{n^2}$ converges.

We prove that $(S_n)_n$ converges showing that it is a Cauchy sequence.

Let $\varepsilon > 0$. For any $m, n \in \mathbb{N}, m > n$

$$|S_m - S_n| = |\sum_{k=n+1}^m \frac{a_k}{k^2}| = \sum_{k=n+1}^m \frac{a_k}{k^2} \le \sum_{k=n+1}^m a_k.$$

Since $\sum_{n=1}^{\infty} a_n$ converges, the sequence $T_n = \sum_{k=1}^n a_k$ converges, hence it is a Cauchy sequence. Thus there exists N such that, for all m, n > N, m > n,

$$|S_m - S_n| \le |T_m - T_n| \le \sum_{k=n+1}^m a_k \le \varepsilon.$$

This proves that $(S_n)_n$ is a Cauchy sequence, hence it converges.

b. Since $\lim_{n\to\infty} a_n = 1$, there exists $N \in \mathbb{N}$ such that

$$|a_n - 1| < \frac{1}{2} \quad \forall \quad n \ge N \quad \Leftrightarrow \quad \frac{1}{2} < a_n < \frac{3}{2} \quad \forall \quad n \ge N.$$

Let k > N. Then

$$\sum_{n=1}^{k} \frac{a_n}{\sqrt{n}} = \sum_{n=1}^{N} \frac{a_n}{\sqrt{n}} + \sum_{n=N+1}^{k} \frac{a_n}{\sqrt{n}}$$
$$\geq \sum_{n=1}^{N} \frac{a_n}{\sqrt{n}} + \frac{1}{2} \sum_{n=N+1}^{k} \frac{1}{\sqrt{n}}$$

Observe that

$$\sum_{n=N+1}^{k} \frac{1}{\sqrt{n}} \ge \frac{k-N}{\sqrt{k+1}}.$$

Thus

$$\sum_{n=1}^{k} \frac{a_n}{\sqrt{n}} \ge \sum_{n=1}^{N} \frac{a_n}{\sqrt{n}} + \frac{1}{2} \frac{k-N}{\sqrt{k+1}}$$

and

$$\infty = \lim_{k \to \infty} \left[\sum_{n=1}^{N} \frac{a_n}{\sqrt{n}} + \frac{1}{2} \frac{k-N}{\sqrt{k+1}} \right] \le \lim_{k \to \infty} \sum_{n=1}^{k} \frac{a_n}{\sqrt{n}}.$$

Thus the series $\sum_{n=1}^{k} \frac{a_n}{\sqrt{n}}$ diverges.

Homework.

1. Let $x_n = 0$ if n is odd, and $x_n = 1 - \frac{1}{n}$ if n is even. Evaluate $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$.

Answer. For all $k \in \mathbb{N}$ let $S_k = \{x_n \mid n \geq k\}$; then 0 is a lower bound for S_k and $0 \in S_k$ so $\inf S_k = 0$. Thus $\liminf_{n \to \infty} x_n = 0$.

For all $k \in \mathbb{N}$ we have $x_k < 1$ so 1 is an upper bound for S_k .

If t < 1 we can choose $N \in \mathbb{N}$ such that 1/N < 1 - t (by the Archimedean Postulate);

if $k \in \mathbb{N}$ we can choose an even integer $m \ge \max\{N, k\}$, then $x_m > t$ and $x_m \in S_k$ so t is not an upper bound for S_k .

Thus $\sup S_k = 1$ for every $k \in \mathbb{N}$, so $\limsup_{n \to \infty} x_n = 1$.

2. Compute

a.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$$
, b. $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$.

Answer. a. We have

$$\frac{1}{n(n+3)} = \frac{A}{n} + \frac{B}{n+3} \quad \Leftrightarrow \quad A = \frac{1}{3}, \quad B = -\frac{1}{3}$$

Hence

$$\sum_{k=1}^{n} \frac{1}{k(k+3)} = \frac{1}{3} \sum_{k=1}^{n} \left[\frac{1}{k} - \frac{1}{k+3}\right]$$
$$= \frac{1}{3} \left(1 - \frac{1}{4} + \frac{1}{2} - \frac{1}{5} + \frac{1}{3} - \frac{1}{6} + \frac{1}{4} - \frac{1}{7} + \dots + \frac{1}{k} - \frac{1}{n+3}\right)$$
$$= \frac{1}{3} \left(1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+3}\right) = \frac{1}{3} \left(\frac{11}{6} - \frac{1}{n+3}\right).$$

So we have

$$\sum_{k=1}^{\infty} \frac{1}{k(k+3)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+3)} = \lim_{n \to \infty} \frac{1}{3} \left(\frac{11}{6} - \frac{1}{n+3}\right) = \frac{11}{18}.$$

b. Observe that $2n + 1 = (n + 1)^2 - n^2$. Hence

$$\sum_{n=1}^{k} \frac{2n+1}{n^2(n+1)^2} = \sum_{n=1}^{k} \frac{(n+1)^2 - n^2}{n^2(n+1)^2}$$
$$= \sum_{n=1}^{k} \left[\frac{1}{n^2} - \frac{1}{(n+1)^2}\right] = 1 - \frac{1}{(k+1)^2}$$

and

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} = \lim_{k \to \infty} \sum_{n=1}^k \frac{2n+1}{n^2(n+1)^2} = \lim_{k \to \infty} \left(1 - \frac{1}{(k+1)^2}\right) = 1.$$

3. When |a| < 1, by calculating the partial sums, evaluate $\sum_{n=1}^{\infty} na^n$. [Hint: Prove first that $\sum_{n=1}^{N} na^n = \frac{a}{1-a} \left[\frac{1-a^N}{1-a} - Na^N \right]$.]

Answer. We prove by induction that

$$\sum_{n=1}^{N} na^{n} = \frac{a}{1-a} \left[\frac{1-a^{N}}{1-a} - Na^{N} \right]. \quad (*)$$

Let $\Lambda = \{N \in \mathbb{N} : (*) \text{ holds true}\}$. We have that $1 \in \Lambda$ since

$$a = \frac{a}{1-a} [\frac{1-a}{1-a} - a].$$

If $N \in \Lambda$, then

$$\begin{split} \sum_{n=1}^{N+1} na^n &= \sum_{n=1}^{N} na^n + (N+1)a^{N+1} \\ &= \frac{a}{1-a} \left[\frac{1-a^N}{1-a} - Na^N \right] + (N+1)a^{N+1} \\ &= \frac{a}{1-a} \left[\frac{1-a^N}{1-a} - Na^N + (N+1)a^N(1-a) \right] \\ &= \frac{a}{1-a} \left[\frac{1-a^N}{1-a} - Na^N + (N+1)a^N - (N+1)a^{N+1} \right] \\ &= \frac{a}{1-a} \left[\frac{1-a^N}{1-a} + a^N - (N+1)a^{N+1} \right] \\ &= \frac{a}{1-a} \left[\frac{1-a^N + (1-a)a^N}{1-a} - (N+1)a^{N+1} \right] \\ &= \frac{a}{1-a} \left[\frac{1-a^{N+1}}{1-a} - (N+1)a^{N+1} \right]. \end{split}$$

This implies that $N + 1 \in \Lambda$. By induction, formula (*) is valid for any integer N.

Since |a| < 1, by Corollary 58 in the Lecture Notes $\lim_{N\to\infty} Na^N = 0$. Using the Algebra of Limits, one has

$$\sum_{n=1}^{\infty} na^n = \lim_{N \to \infty} \sum_{n=1}^{N} na^n$$
$$= \lim_{N \to \infty} \frac{a}{1-a} \left[\frac{1-a^N}{1-a} - Na^N \right] = \frac{a}{(1-a)^2}.$$

 $\mathbf{M}\mathbf{M}$