
MA10207 Analysis 1 - Semester 1, 2021/22

Problem Sheet Week 7- Solutions

1. Find lim supn→∞ an and lim infn→∞ an for the following sequences

a. an = (−1)n + sin(2πn), b. an = (−1)n
2n

1 + n
.

Answer. a. Since sin(2πn) = 0 for all n, an = (−1)n. Since supn≥k(−1)n =

1, then lim supn→∞ an = limk→∞ supn≥k(−1)n = 1. Since infn≥k(−1)n = −1, then

lim infn→∞ an = limk→∞ infn≥k(−1)n = −1.

b. For any k let Sk = {an : n ≥ k}.

Observe that limn→∞
2n
1+n = 2.

We claim that inf Sk = −2.

For any n ≥ k,

an = (−1)n
2n

n+ 1
≥ − 2n

n+ 1
> −2

since 2n
n+1 < 2 for all n.

Assume there exists a lower bound t for Sk with t > −2. We can take t < 0. Then for

all n ≥ k we have an ≥ t. We assume n is odd. Then

an ≥ t ⇔ (−1)n
2n

n+ 1
≥ t ⇔ − 2n

n+ 1
≥ t

−(2 + t)n ≥ t ⇔ n ≤ − t

t+ 2
,

where in the latter inequality we used that −(2 + t) < 0. This is a contradiction with

the Archimedean Principle. Thus there is no lower bound to Sk greater than −2. This

proves that infk Sk = −2. Thus lim infn→∞ an = limk→∞ infk Sk = −2.

We claim that supSk = 2.

For any n ≥ k,

an = (−1)n
2n

n+ 1
≤ 2n

n+ 1
< 2.

Assume there exists an upper bound s for Sk with s < 2. We can take s > 0. Then

for all n ≥ k we have an ≤ s. We assume n is even. Then

an ≤ s ⇔ 2n

n+ 1
≤ s ⇔ (2− s)n ≤ s ⇔ n ≤ s

2− s
,

where in the latter inequality we used that 2 − s > 0. This is a contradiction with the

Archimedean Principle. Thus there is no upper bound to Sk less than 2. This proves

that supk Sk = 2. Thus lim supn→∞ an = limk→∞ supk Sk = 2.
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2. Let (an)n and (bn)n be two sequence. Assume there exists M ∈ N such that

an ≤ bn ∀ n ≥ M.

Prove that

lim inf
n→∞

an ≤ lim inf
n→∞

bn, and lim sup
n→∞

an ≤ lim sup
n→∞

bn.

Answer. For any k ∈ N, we consider the sets Sk = {an : n ≥ k} and Tk = {bn : n ≥

k}.

Let k ≥ M . Then an ≤ bn for all n ≥ k and

inf
k
Sk ≤ an ≤ bn

for all n ≥ k. Hence

inf
k
Sk ≤ bn, ∀n ≥ k.

Thus infk Sk ≤ infk Tk for all k ≥ M . Henceforth lim infn→∞ an ≤ lim infn→∞ bn.

Besides,

sup
k

Tk ≥ bn ≥ an

for all n ≥ k. Observe then that

sup
k

Tk ≥ an, ∀n ≥ k.

Thus supk Tk ≥ supk Sk for all k ≥ M . Henceforth lim supn→∞ an ≤ lim supn→∞ bn.

3. Compute

a.
∞∑
n=1

1

4n2 − 1
, b.

∞∑
n=1

1

n(n+ 1)(n+ 2)
.

Answer. a. Let n ∈ N and consider

Sn =

n∑
k=1

1

4k2 − 1
.

Since

1

4k2 − 1
=

1

2
[

1

2k − 1
− 1

2k + 1
]



we get

Sn =
1

2

n∑
k=1

[
1

2k − 1
− 1

2k + 1
]

=
1

2
[1− 1

3
+

1

3
− 1

5
+ ..

1

2n− 1
− 1

2n+ 1
]

=
1

2
[1− 1

2n+ 1
].

Hence, by the Algebra of Limits,

∞∑
n=1

1

4n2 − 1
= lim

n→∞
Sn = lim

n→∞

(
1

2
[1− 1

2n+ 1
]

)
=

1

2
.

b. Let n ∈ N and consider

Sn =

n∑
k=1

1

k(k + 1)(k + 2)
.

Since

1

k(k + 1)(k + 2)
=

A

k(k + 1)
+

B

(k + 1)(k + 2)
⇔ A =

1

2
, B = −1

2
,

we have

Sn =

n∑
k=1

1

k(k + 1)(k + 2)

=
1

2

n∑
k=1

[
1

k(k + 1)
− 1

(k + 1)(k + 2)
]

=
1

2
[
1

2
− 1

6
+

1

6
− 1

12
+ ...+

1

n(n+ 1)
− 1

(n+ 1)(n+ 2)
]

=
1

2
[
1

2
− 1

(n+ 1)(n+ 2)
].

We then conclude that

∞∑
n=1

1

n(n+ 1)(n+ 2)
= lim

n→∞
Sn = lim

n→∞

[
1

2
[
1

2
− 1

(n+ 1)(n+ 2)
]

]
=

1

4
.

4. a. Prove that if an ≥ 0 and
∑∞

n=1 an converges, then
∑∞

n=1
an
n2 converges.

b. Prove that if limn→∞ an = 1, then
∑∞

n=1
an√
n
diverges.

Answer. a. Let Sn =
∑n

k=1
ak
k2

be the sequence of partial sums associated to

the series
∑∞

n=1
an
n2 . If we prove that the sequence (Sn)n is convergent, then

∑∞
n=1

an
n2

converges.

We prove that (Sn)n converges showing that it is a Cauchy sequence.



Let ε > 0. For any m,n ∈ N, m > n

|Sm − Sn| = |
m∑

k=n+1

ak
k2

| =
m∑

k=n+1

ak
k2

≤
m∑

k=n+1

ak.

Since
∑∞

n=1 an converges, the sequence Tn =
∑n

k=1 ak converges, hence it is a Cauchy

sequence. Thus there exists N such that, for all m,n > N , m > n,

|Sm − Sn| ≤ |Tm − Tn| ≤
m∑

k=n+1

ak ≤ ε.

This proves that (Sn)n is a Cauchy sequence, hence it converges.

b. Since limn→∞ an = 1, there exists N ∈ N such that

|an − 1| < 1

2
∀ n ≥ N ⇔ 1

2
< an <

3

2
∀ n ≥ N.

Let k > N . Then

k∑
n=1

an√
n
=

N∑
n=1

an√
n
+

k∑
n=N+1

an√
n

≥
N∑

n=1

an√
n
+

1

2

k∑
n=N+1

1√
n

Observe that
k∑

n=N+1

1√
n
≥ k −N√

k + 1
.

Thus
k∑

n=1

an√
n
≥

N∑
n=1

an√
n
+

1

2

k −N√
k + 1

and

∞ = lim
k→∞

[
N∑

n=1

an√
n
+

1

2

k −N√
k + 1

]
≤ lim

k→∞

k∑
n=1

an√
n
.

Thus the series
∑k

n=1
an√
n
diverges.

Homework.

1. Let xn = 0 if n is odd, and xn = 1− 1
n if n is even.

Evaluate lim supn→∞ xn and lim infn→∞ xn.

Answer. For all k ∈ N let Sk = {xn | n ≥ k}; then 0 is a lower bound for Sk and

0 ∈ Sk so inf Sk = 0. Thus lim infn→∞ xn = 0.

For all k ∈ N we have xk < 1 so 1 is an upper bound for Sk.

If t < 1 we can choose N ∈ N such that 1/N < 1− t (by the Archimedean Postulate);



if k ∈ N we can choose an even integer m ≥ max{N, k}, then xm > t and xm ∈ Sk so t

is not an upper bound for Sk.

Thus supSk = 1 for every k ∈ N, so lim supn→∞ xn = 1.

2. Compute

a.
∞∑
n=1

1

n(n+ 3)
, b.

∞∑
n=1

2n+ 1

n2(n+ 1)2
.

Answer. a. We have

1

n(n+ 3)
=

A

n
+

B

n+ 3
⇔ A =

1

3
, B = −1

3
.

Hence
n∑

k=1

1

k(k + 3)
=

1

3

n∑
k=1

[
1

k
− 1

k + 3
]

=
1

3
(1− 1

4
+

1

2
− 1

5
+

1

3
− 1

6
+

1

4
− 1

7
+ ....+

1

k
− 1

n+ 3
)

=
1

3
(1 +

1

2
+

1

3
− 1

n+ 3
) =

1

3
(
11

6
− 1

n+ 3
).

So we have
∞∑
k=1

1

k(k + 3)
= lim

n→∞

n∑
k=1

1

k(k + 3)
= lim

n→∞

1

3
(
11

6
− 1

n+ 3
) =

11

18
.

b. Observe that 2n+ 1 = (n+ 1)2 − n2. Hence

k∑
n=1

2n+ 1

n2(n+ 1)2
=

k∑
n=1

(n+ 1)2 − n2

n2(n+ 1)2

=

k∑
n=1

[
1

n2
− 1

(n+ 1)2
] = 1− 1

(k + 1)2

and

∞∑
n=1

2n+ 1

n2(n+ 1)2
= lim

k→∞

k∑
n=1

2n+ 1

n2(n+ 1)2
= lim

k→∞

(
1− 1

(k + 1)2

)
= 1.

3. When |a| < 1, by calculating the partial sums, evaluate

∞∑
n=1

nan.

[Hint: Prove first that
∑N

n=1 na
n = a

1−a

[
1−aN

1−a −NaN
]
.]

Answer. We prove by induction that

N∑
n=1

nan =
a

1− a

[
1− aN

1− a
−NaN

]
. (∗)



Let Λ = {N ∈ N : (∗) holds true}. We have that 1 ∈ Λ since

a =
a

1− a
[
1− a

1− a
− a].

If N ∈ Λ, then

N+1∑
n=1

nan =

N∑
n=1

nan + (N + 1)aN+1

=
a

1− a

[
1− aN

1− a
−NaN

]
+ (N + 1)aN+1

=
a

1− a

[
1− aN

1− a
−NaN + (N + 1)aN (1− a)

]
=

a

1− a

[
1− aN

1− a
−NaN + (N + 1)aN − (N + 1)aN+1

]
=

a

1− a

[
1− aN

1− a
+ aN − (N + 1)aN+1

]
=

a

1− a

[
1− aN + (1− a)aN

1− a
− (N + 1)aN+1

]
=

a

1− a

[
1− aN+1

1− a
− (N + 1)aN+1

]
.

This implies that N + 1 ∈ Λ. By induction, formula (∗) is valid for any integer N .

Since |a| < 1, by Corollary 58 in the Lecture Notes limN→∞NaN = 0. Using the

Algebra of Limits, one has

∞∑
n=1

nan = lim
N→∞

N∑
n=1

nan

= lim
N→∞

a

1− a

[
1− aN

1− a
−NaN

]
=

a

(1− a)2
.

MM


