MA10207 Analysis 1 - Semester 1, 2021/22
Problem Sheet Week 7- Solutions

1. Find limsup,,_,, @, and liminf,,_, a, for the following sequences

2n
Can = ()" +sin(27n), b ayp = (—1)" :
a. ap, = (—1)"+sin(27n) an, = (—1) T
Answer. a.  Since sin(2mn) = 0 for all n, a, = (=1)". Since sup,,>,(—1)" =
1, then limsup,, o, an = limg_oosUp,>(—1)" = 1. Since inf,>,(—1)" = —1, then

liminf, ;o an = limg_, o inf, >, (—1)" = —1.
b. For any k let Sy, = {a, : n > k}.
Observe that lim,, ﬁr—”n =2.

We claim that inf S, = —2.

For any n > k,
2n 2n

> — > —
n+1~- n+1

an = (—1)" 2

n%ll < 2 for all n.

Assume there exists a lower bound ¢ for S; with ¢ > —2. We can take t < 0. Then for

since

all n > k we have a,, > t. We assume n is odd. Then

2n 2n
>t & -

ap, >t < (=1)"

—-24tn>t & n<

where in the latter inequality we used that —(2 +¢) < 0. This is a contradiction with
the Archimedean Principle. Thus there is no lower bound to Sy greater than —2. This
proves that infy S = —2. Thus liminf, , a, = limg_,o infx S = —2.

We claim that sup S = 2.

For any n > k,

2n 2n
<
n+1" " n4+1
Assume there exists an upper bound s for S; with s < 2. We can take s > 0. Then

an = (—1)" < 2.

for all n > k we have a,, < s. We assume n is even. Then

2n < - (2 ) < - < S
S —s)n<s n
n+1~ - —2—35’

a, < s

where in the latter inequality we used that 2 — s > 0. This is a contradiction with the
Archimedean Principle. Thus there is no upper bound to S; less than 2. This proves

that sup;, S = 2. Thus limsup,, ., ¢n = limg_,o, supy Sg = 2.
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2.

3.

Let (an)n and (by)n be two sequence. Assume there exists M € N such that

an <b, V n>DM.

Prove that

liminf a,, <liminfb,, and limsupa, <limsupb,.
n—00 n—o0 n—o00 n—00

Answer. For any k € N, we consider the sets S, = {a,, : n >k} and T}, = {b, :

Let £ > M. Then a,, <b, for all n > k and

for all n > k. Hence

i%f Sp <b,, Vn>k.

Thus infy, Sy < infy T}, for all £ > M. Henceforth liminf,,_,~ a, < liminf,, . by.

Besides,

supTy > b, > ap
k

for all n > k. Observe then that
supTy > a,, Vn > k.
k

Thus supy, Ty > supy, Sg for all kK > M. Henceforth limsup,,_,., an < limsup,, o bn.

Compute
o0 o0
1 1
a. ——, b .
;4712—1 ;n(n—}-l)(n—f—Z)
Answer. a. Letn € N and consider
n
1
Sn=2 ot
k=1
Since

1 _1[ 1 1
4k2 -1 22k—1 2k~+1

]




we get

1 — 1 1
S, == —
" 2;[21{—1 2k+1]

_1[1 1+1 1+ 1 1]

2 3 '3 5 "2n—1 2n+41
1 1

=_[1 - ].
2 on + 1

Hence, by the Algebra of Limits,

oo
1 : : 1 1 1
S gy = dm s =t (5 5y)) =

b. Let n € N and consider

3

g 1
"_kzlk(k+1)(k:+2)'
Since
1 A B 1 1
= & A=_-,B=-—_,
Mkt D)(k+2) Ek+D  hrDk12) > 2
we have
- 1
Sn
;k(k+1)(k+2)
1 & 1 1
- 2;%(“1) a (k:+1)(k+2)]
_1[1 1_{_1 i_|_ + 1 1 ]
22 6 6 12 77 am+l) (m+1)(n+2)
11 L
22 (n+1)(n+2)
We then conclude that
> 1 , 11 1 1
;n(n+1)(n+2) = m S =l s - G eyl T

4. a. Prove that if a, > 0 and Y 7, a, converges, then > >° | o4 converges.

b. Prove that if lim, o ap = 1, then > 7, % diverges.

Answer. a. Let S, = Y, 7% be the sequence of partial sums associated to
the series 3 >° | %5, If we prove that the sequence (S,), is convergent, then ) > %3

converges.

We prove that (.S,,), converges showing that it is a Cauchy sequence.



Let € > 0. For any m,n € N, m >n

m a m a m
k k
S — Sl =1 > 22l = E,ﬁﬁ D>
k=n-+1 k=n+1 k=n-+1

Since > >° | a, converges, the sequence T;, = Y ,_; aj converges, hence it is a Cauchy
sequence. Thus there exists N such that, for all m,n > N, m > n,
m
‘Sm_5n| < ‘Tm_Tn‘ < Z ap < €.
k=n+1
This proves that (S,), is a Cauchy sequence, hence it converges.
b. Since lim, . a, = 1, there exists N € N such that
1 1 3
la, — 1| <= V n>N & =—<a,<= V n>N.

2 2 2

Let k > N. Then

n=1 n=1 n=N+1
N k
an 1 1
S
n=1 n 2 n=N-+1 \/ﬁ

Observe that

n=N+1
Thus i
N
Sy
n=1 n n=1 n k+1
and N i
. an 1k—-N an
=1 4= <1 —
* kf;o[;ﬁu i O By,

n=1

Thus the series Zk % diverges.

Homework.
1. Letxz,=0ifnisodd, and z, =1 — % if n is even.

Evaluate limsup,,_, . *pn and liminf, o %y.

Answer. For all k € N let S, = {z,, | n > k}; then 0 is a lower bound for S} and
0 €S soinf S, = 0. Thus liminf,_ ., z, = 0.
For all £ € N we have x; < 1 so 1 is an upper bound for Sy.
If t <1 we can choose N € N such that 1/N < 1 —t (by the Archimedean Postulate);



if K € N we can choose an even integer m > max{N, k}, then z,, >t and z,, € Si so ¢
is not an upper bound for S;.

Thus sup S; = 1 for every k € N, so limsup,,_,,, ©n, = 1.

2.  Compute
(o)
1 2n+1
. — b —_—.
“ nz::ln(n+3)’ z:1722(114—1)2

n=

Answer. a. We have

1 A B 1
=—+—— & A=-  B=-——.
n(n + 3) n T +3 ’ 3
Hence
1 _1”[1 1}
— k(k+3) 3 P ko kE+3
_1(1 1+1 1+1 1+1 1+ 1 1 )
3 4 2 5 3 6 4 7 kK n+3
1 1 1 1 1 11 1
3(+2+3 n+3) 3(6 n—i—S)
So we have

[ee] n

1 1 1111 1
i . lim (& — _——
;k(kJr?)) nin;‘o;k(kw) A (e =053 T 18

b. Observe that 2n 4+ 1 = (n + 1)?> — n%. Hence
Zk: 2n+1 _zk: (n+1)% — n?
n2(n+1)2 — n*(n+1)?

n=1
U 1 1
gP 3 i ey e

and
00 k

2n +1 2n+1 1
e e lim (1 —— ) =1,
Zzan(n—i—l)? kir&;n%nﬂ)z kinéo( (k:+1)2>

n=

oo
3. When |a| < 1, by calculating the partial sums, evaluate Z na”.

n=1

[Hint: Prove first that ZnN:1 na" = % [11—:1;" - NaN} ]

Answer. We prove by induction that

N N

n a |(l—a N

= - N .
;na l—a[l—a a] (%)




Let A={N € N : (x) holds true}. We have that 1 € A since

a 1—-a
a= [ — al.
l-al-a
If N € A, then
N+1 N
Z na" = Zna" + (N +1)aMH!
n=1 n=1
a [1—a"
— _NN N 1 N+1
T a ]—i—( +1)a
a _1—(1N N N
= - N N +1 1—
[ - e e o)
a [1-a" N N N+1
=12 |74 —Na" +(N+1)a" —(N+1)a
a _1—(IN N N
= — (N 4+ 1)aN !
l-a|1l-a T (N +1)a ]
a [1—aV¥+(1-a)dV N
— — (N +1 +1
1—a| 1—-a (N +1)a
a '1_aN+1 N
= — (N + 1)a¥ .
l—a| 1-a (N +1)a ]

This implies that N + 1 € A. By induction, formula (x) is valid for any integer V.

Since |a| < 1, by Corollary 58 in the Lecture Notes limy ;oo Na’¥ = 0. Using the
Algebra of Limits, one has

[e’s) N
Zna" = lim na”
N—oo
n=1 n=1
= lim ¢ 1—a" — NV | = ¢
Nocwl—a| l—a (1—a)?

MM



