
MA10207 Analysis 1 - Semester 1, 2021/22

Problem Sheet Week 6 - Solutions

1. By looking for suitable subsequences, prove that the following sequences are not con-

vergent:

a.

((−1)nn
2n+ 1

)
n
, b.

(
sin(nπ3 )

)
n
.

Answer. Corollary 62 from the lecture notes states

If a sequence has two subsequences converging to different limits, then the sequence is

divergent (or not convergent).

a. Let an = (−1)nn
2n+1 . Take the subsequences (a2k)k and (a2k−1)k. Then a2k = 2k

4k+1

and thus limk→∞ a2k = 1
2 . Besides, a2k−1 = −(2k−1)

4k−1 and thus limk→∞ a2k−1 = −1
2 . We

conclude that the sequence ( (−1)nn
2n+1 )n is not convergent.

b. Let bn = sin(nπ3 ). Take the subsequences (b6k)k and (b1+6k)k. Then b6k =

sin(6kπ
3 ) = sin(2kπ) = 0 and thus limk→∞ a6k = 0. Besides, b1+6k = sin( (1+6k)π

3 ) =

sin(π3 +2kπ) =
√

3
2 and thus limk→∞ b1+6k =

√
3

2 . We conclude that the sequence sin(nπ3 )

is not convergent.

2. Let (an) be a sequence such that the subsequences (a2k) and (a2k−1) both converge to

the same limit L. Prove that limn→∞ an = L.

Answer. We want to prove that, for any ε > 0 there exists N such that

|an − L| < ε,

for all n ≥ N .

Since limk→∞ a2k = L and limk→∞ a2k−1 = L, given ε > 0 there exist K1 and K2 such

that

(1) |a2k − L| < ε, for all k ≥ K1,

and

(2) |a2k−1 − L| < ε, for all k ≥ K2.

Set N = max(2K1, 2K2 − 1). If n ≥ N and n is even, then n = 2` ≥ N ≥ 2K1, thus

` ≥ K1 and from (1) we get |an − L| < ε. If n ≥ N and n is odd, then n = 2` − 1 ≥
1



N ≥ 2K2 − 1, thus ` ≥ K2 and from (2) we get |an − L| < ε. Thus for all n ≥ N , one

has |an − L| < ε. We conclude that limn→∞ an = L.

3. Compute the limits of the following sequences

a. an = 2n

1 + 3 · 2n , b. an =
(
n2 − 3
n2

)n
, c. an = 7n + n34n

n10 − 7n .

[Hint: use the binomial inequality for b.]

Answer. a. We claim that 2n > n, for any n ∈ N. We prove it by induction. For

n = 1, we observe that 2 > 1. Assume that 2n > n, then

2n+1 − n− 1 = 2n − n+ 2n − 1 > 0.

Since limn→∞ n =∞, it holds that limn→∞ 2n =∞, and limn→∞
1

2n = 0. Thus

lim
n→∞

2n

1 + 3 2n = lim
n→∞

1
3 + 1

2n

= 1
3 .

b. We write an =
(
1− 3

n2

)n
, which gives an ≤ 1 for any n. The binomial inequality

gives (
1− 3

n2

)n
≥ 1− 3

n2n.

Thus we have

1− 3
n
≤
(

1− 3
n2

)n
< 1.

The Pinching Theorem implies that limn→∞ an = 1, since limn→∞(1− 3
n) = 1.

c. It holds

lim
n→∞

7n + n34n

n10 − 7n = − lim
n→∞

1 + n3(4
7)n

1− n10(1
7)n

= −1,

since by Corollary 57 in the lecture notes we have

lim
n→∞

n3(4
7)n = 0, lim

n→∞
n10(1

7)n = 0

4. The sequence (an)n satisfies an > 0 and an+1 <
an
2 for all n. Prove that limn→∞ an = 0.

Answer. We claim that an+1 <
a1
2n for all n. We prove it by induction. For n = 1,

we have that a2 <
a1
2 by assumption. Assume that an+1 <

a1
2n . Then we have

an+2 <
an+1

2 <
1
2
a1
2n = a1

2n+1 .

Thus, we have that an+1 <
a1
2n for all n.



For all n, we have

0 < an <
a1

2n+1 .

Since limn→∞
a1

2n+1 = 0, by the Sandwich Theorem we conclude that

lim
n→∞

an = 0.

Homework.

1. Find the following limits.

a. lim
n→∞

nn

n! b. lim
n→∞

3n

n2 ,

c. lim
n→∞

n2
(2

3

)n
, d. lim

n→∞
n3 + 2n2 + 1
n4 + 8n2 + 2 ,

Answer. a. Use the growth factor test, and compute

lim
n→∞

(n+ 1)(n+1)

(n+ 1)!
n!
nn

= lim
n→∞

(n+ 1)(n+1)

nn
n!

(n+ 1)!

= lim
n→∞

(n+ 1)n(n+ 1)
nn

1
(n+ 1) = lim

n→∞

(
n+ 1
n

)n
= lim

n→∞

(
1 + 1

n

)n
.

By Example 50 from the lecture notes, limn→∞
(
1 + 1

n

)n
> 1, thus limn→∞

nn

n! =∞.

b. Use the growth factor test, and compute

lim
n→∞

3n+1

(n+ 1)2
n2

3n = lim
n→∞

3
(

1− 1
n+ 1

)2
= 3 > 1,

thus limn→∞
3n

n2 =∞.

c. Use the growth factor test, and compute

lim
n→∞

(n+ 1)2
(2

3

)n+1 1
n2
(

2
3

)n = lim
n→∞

2
3 (1 + 1

n
)2 = 2

3 < 1,

thus limn→∞ n
2
(

2
3

)n
= 0.

d. By the algebra of limits

lim
n→∞

n3 + 2n2 + 1
n4 + 8n2 + 2 = lim

n→∞
1
n

1 + 2 1
n + 1

n3

1 + 8 1
n2 + 2

n4
= 0

since limn→∞
1
n = 0.



2. Prove that (an) is convergent if and only if the subsequences (a2k)k, (a2k−1)k and (a3k)k
converge.

Answer. Assume first that (an) is convergent. By Proposition 61 in the Lecture

Notes it follows that any subsequence of (an) is convergent. Thus (a2k)k, (a2k−1)k and

(a3k)k converge.

Assume now that (a2k)k, (a2k−1)k and (a3k)k converge. We want to show that (an) is

convergent.

Let

L1 = lim
k→∞

a2k, L2 = lim
k→∞

a2k−1, L3 = lim
k→∞

a3k.

We claim that L1 = L3. Let ε > 0. Since (a3k)k is convergent, it is a Cauchy sequence.

Thus

∃K1 ∀h, j ≥ K1 |a3h − a3j | <
ε

3 .

Since (a2k)k is convergent, its subsequence (a6m)m is also convergent and limm→∞ a6m =

L1. Hence

∃M ∀m ≥M |a6m − L1| <
ε

3 .

Let K = max(K1,M). Then, for all k ≥ K

|a3k − L1| = |a3k − a6k|+ |a6k − L1| < ε.

We proved that limk→∞ a3k = L1. Since the limit, when it exists, it is unique, we get

L1 = L3.

We claim that L2 = L3. Let ε > 0. Since (a3k)k is convergent, it is a Cauchy sequence.

Thus

∃K1 ∀h, j ≥ K1 |a3h − a3j | <
ε

3 .

Since (a2k−1)k is convergent, its subsequence (a2(3m−1)−1)m = (a3(2m−1))m is also con-

vergent and limm→∞ a3(2m−1) = L2. Hence

∃M ∀m ≥M |a3(2m−1) − L2| <
ε

3 .

Let K = max(K1,M). Then, for all k ≥ K

|a3k − L1| = |a3k − a3(2k−1)|+ |a3(2k−1) − L2| < ε.

Since the limit, when it exists, it is unique, we get L2 = L3.

Since L1 = L2 = L3, we have that limk→∞ a2k = limk→∞ a2k−1 = L1.



We have proven in Execise 2 the following:

Let (an) be a sequence such that the subsequences (a2k) and (a2k−1) both converge to

the same limit L. Prove that limn→∞ an = L.

Hence limn→∞ an exists.

3. a. Prove that a monotone sequence which contains a bounded subsequence is bounded.

b. Prove that (an)n∈N is not bounded below if and only if there exists a subsequence

(ank
)k∈N of (an)n∈N such that limk→∞ ank

= −∞.

Answer. a. Let (an)n be a monotone sequence and let (ank
)k be a bounded

subsequence of (an)n.

Since (ank
)k is bounded, there exists M > 0 such that

|ank
| ≤M ∀k ∈ N ⇔ −M ≤ ank

≤M ∀k ∈ N.

If (an)n is monotone increasing, then we need to prove that (an)n is bounded above.

Since k → nk is strictly increasing, then nk ≥ k for all k ∈ N. (You can prove this fact by

induction.) Since (ak)k is monotone increasing, ak ≤ ank
≤M . Thus (ak)k is bounded.

If (an)n is monotone decreasing, then we need to prove that (an)n is bounded below.

Since k → nk is strictly increasing, then nk ≥ k for all k ∈ N. Since (ak)k is monotone

decreasing, ak ≥ ank
≥ −M . Thus (an)n is bounded.

b. Assume (an)n is not bounded below. Then there exists n1 ∈ N so that an1 < −1.

Since (an)n is not bounded below, we now can find n2, with n2 > n1 so that

an2 < −2.

Repeating this, we can prove that for all k ∈ N, there exists nk > nk−1

(∀k ∈ N) (∃nk ∈ N) ank
≤ −k.

Thus (ank
)k is a subsequence of (an)n and limk→∞ ank

= −∞.

Assume now there exits a subsequence (ank
)k of (an)n with limk→∞ ank

= −∞. Hence,

for allM there exists k ∈ N such that ank
< M . Henceforth (an)n is not bounded below.

MM


