
MA10207 Analysis 1 - Semester 1, 2021/22

Problem Sheet Week 4 - Solutions

1. Using the definition of limits, prove that

(a). lim
n→∞

n

2n + 3 = 1
2 , (b). lim

n→∞
cos(102n2)

n2 = 0.

[Hint: you may use that −1 ≤ cos(x) ≤ 1 for all x ∈ R.]

Answer. (a). We want to prove that

(∀ε > 0) (∃N ∈ N), ∀n ≥ N | n

2n + 3 −
1
2 | < ε.

Observe that

| n

2n + 3 −
1
2 | =

3
4n + 6 .

Take ε > 0. We have

| n

2n + 3 −
1
2 | < ε ⇔ 3

4n + 6 < ε ⇔ n >
3− 6ε

4ε
.

By the Archimedean Principle, there exists N ∈ N such that N > 3−6ε
4ε . Hence for all

n ≥ N , | n
2n+3 −

1
2 | < ε.

(b). We want to prove that

(∀ε > 0) (∃N ∈ N), ∀n ≥ N |cos(102n2)
n2 | < ε.

Take ε > 0. Observe that

|cos(102n2)
n2 | = | cos(102n2)|

n2 ≤ 1
n2

Hence

n >
1√
ε
⇒ |cos(102n2)

n2 | ≤ 1
n2 < ε.

It is enough to choose N ∈ N with N > 1√
ε
. Such N exists by the Archimedean Principle.

2. Find the limit of the following sequences

(i) an = 1 + (1
3)n, (ii) an = 7n(1− n)

(1 + n2)9n
.

Answer. (i) From the lecture notes we know that limn→∞(1
3)n = 0. By the Algebra

of Limits,

lim
n→∞

an = 1.
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(ii) We simplify

an = 7n(1− n)
(1 + n2)9n

= (7
9)n ( 1

n − 1)
n( 1

n2 + 1)

From the lecture notes, we have that limn→∞(7
9)n = 0, limn→∞

1
n = 0. By the algebra

of limits, we conclude that

lim
n→∞

7n(1− n)
(1 + n2)9n

= 0.

3. Let (an)n∈N be a sequence of positive numbers such that limn→∞ an = L ≥ 0.

a. Prove that (√an)n∈N converges to
√

L.

b. Prove that (
√

1 + a2
n)n∈N converges to

√
1 + L2.

Answer. a. For any x, y ≥ 0 it holds

|
√

x−√y| ≤
√
|x− y|.

This fact has been proven in the Problem Sheet Week 3.

Hence, for all n,

|
√

an −
√

L| ≤
√
|an − L|.

Since limn→∞ an = L, for any ε > 0 there exists N ∈ N so that for any n ≥ N

|an − L| < ε2.

We have that: for any ε > 0 there exists N ∈ N so that for any n ≥ N

|
√

an −
√

L| ≤
√

ε2 = ε.

This concludes the proof.

b. In Problem Sheet Week 3 we proved that, for any x, y ∈ R

|
√

1 + x2 −
√

1 + y2| ≤ |x− y|.

Thus, for any n, we have

|
√

1 + a2
n −

√
1 + L2| ≤ |an − L|.

Since limn→∞ an = L, for any ε > 0 there exists N ∈ N so that for any n ≥ N

|an − L| < ε.

We have that: for any ε > 0 there exists N ∈ N so that for any n ≥ N

|
√

1 + a2
n −

√
1 + L2| < ε.



This concludes the proof.

4. Let A ⊆ R be a set bounded above, and A 6= ∅. Show that there exists a sequence

(an)n∈N such that an ∈ A for any n ∈ N and limn→∞ an = sup(A).

Answer. Since A is bounded above, and A 6= ∅, sup(A) exists by the Completeness

Axiom. By definition of sup(A), for any n ∈ N there exists an ∈ A so that

sup(A)− 1
n
≤ an.

Moreover, for all n ∈ N, an ≤ sup(A). Hence, for all n

sup(A)− 1
n
≤ an ≤ sup(A).

We claim that limn→∞ an = sup(A). Observe that

0 ≤ sup(A)− an ≤
1
n

.

By the Archimedean Postulate, for any ε there exists N ∈ N so that N > 1
ε . Therefore,

for any n ≥ N ,

|an − sup(A)| < ε.

Hence limn→∞ an = sup(A).

Homework.

1. Using the definition of limits, prove that

a. lim
n→∞

2n + 3
3n− 7 = 2

3 , b. lim
n→∞

n

3n2 + 2 = 0.

Answer. a. We need to show that for any real number ε > 0 there exists an integer

number N so that, for any n ≥ N then

|2n + 3
3n− 7 −

2
3 | < ε

We compute
2n + 3
3n− 7 −

2
3 = 23

3(3n− 7) .

Hence the inequality gets rewritten as

23
3|3n− 7| < ε⇔ |3n− 7| > 23

3ε
.

We can now assume that n ≥ 3, so |3n− 7| = 3n− 7. Thus

23
3|3n− 7| < ε ⇔ |3n− 7| > 23

3ε
⇔ n >

21ε + 23
9ε

.



By the Archimedean Postulate, given any ε > 0 there exists N ∈ N so that N >

max(3, 14ε+69
6ε ). This concludes the proof.

b. We want to prove that

(∀ε > 0) (∃N ∈ N), ∀n ≥ N | n

3n2 + 2 | < ε.

Take ε > 0. Observe that

| n

3n2 + 2 | ≤
n

3n2 = 1
3n

Hence

n >
1
3ε

⇒ | n

3n2 + 2 | ≤
1

3n
< ε.

It is enough to choose N ∈ N with N > 1
3ε . Such N exists by the Archimedean Principle.

2. Find the limit of the following sequences

(i) an =
√

n2 + 1− n, (ii) an =
1− (2

3)n

n−4 + n−3 − 9 .

[Hint for (i): calculate first (
√

n2 + 1− n)(
√

n2 + 1 + n).]

Answer. (i) We rationalise

an =
√

n2 + 1− n = (
√

n2 + 1− n)(
√

n2 + 1 + n)√
n2 + 1 + n

= 1√
n2 + 1 + n

.

We factor out n in the denominator

an = 1√
n2 + 1 + n

= 1
n

 1√
1 + 1

n2 + 1

 .

From the lecture notes, we have that limn→∞
1
n = 0. By the algebra of limits, limn→∞

1
n2 =

limn→∞
1
n ·

1
n = 0. We claim that limn→∞

√
1 + 1

n2 = 1. Indeed, given ε > 0, one has

|
√

1 + 1
n2 − 1| < ε ⇔

√
1 + 1

n2 − 1 < ε ⇔
√

1 + 1
n2 < 1 + ε ⇔ 1 + 1

n2 < (1 + ε)2

⇔ n >
1√

2ε + ε2
.

For any ε > 0, by the Archimedean postulate there exists N ∈ N so that N > 1√
2ε+ε2 .

Thus, for any n ≥ N , it holds

|
√

1 + 1
n2 − 1| < ε.

This proves that limn→∞
√

1 + 1
n2 = 1. By the algebra of limits, we get that

lim
n→∞

√
1 + 1

n2 + 1 = 2, lim
n→∞

 1√
1 + 1

n2 + 1

 = 1
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and

lim
n→∞

an = lim
n→∞

1√
n2 + 1 + n

= lim
n→∞

1
n

 1√
1 + 1

n2 + 1

 = 0.

(ii) From the lecture notes, we have that limn→∞(2
3)n = 0. By the algebra of limits,

we get limn→∞ 1− (2
3)n = 1. Besides, since limn→∞

1
n = 0, by the Algebra of Limits we

have limn→∞ n−4 = limn→∞ n−3 = 0 and limn→∞ n−4 + n−3 − 9 = −9.

Using again the Algebra of Limits we get

lim
n→∞

an = lim
n→∞

[
1− (2

3)n

n−4 + n−3 − 9

]
= −1

9 .

3. Let (an)n∈N be a sequence of real numbers, such that limn→∞ an = 1. Using the

definition of limits, prove that limn→∞ a
1
3
n = 1.

Answer. We want to prove that

(∀ε > 0) (∃N ∈ N) ∀n ≥ N |a
1
3
n − 1| < ε.

Recall that

x3 − y3 = (x− y)(x2 + xy + y2) ∀x, y ∈ R.

Hence

an − 1 = (a
1
3
n − 1)(a

2
3
n + a

1
3
n + 1).

Let ε > 0. Since limn→∞ an = 1,

∃N1 ∈ N ∀n ≥ N1 |an − 1| < 1
2 ,

and

∃N2 ∈ N ∀n ≥ N2 |an − 1| < ε.

Observe that |an − 1| < 1
2 ⇔

1
2 < an < 3

2 , thus ∀n ≥ N1 we have that an > 0.

Take N = max(N1, N2). Then ∀n ≥ N

|a
1
3
n − 1| = | an − 1

a
2
3
n + a

1
3
n + 1

| = |an − 1|

a
2
3
n + a

1
3
n + 1

≤ |an − 1| < ε.

This concludes the proof.
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