MA10207 Analysis 1 - Semester 1, 2021/22
Problem Sheet Week 4 - Solutions

1. Using the definition of limits, prove that
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[Hint: you may use that —1 < cos(z) <1 for all x € R.]

Answer. (a). We want to prove that

n 1
aN >N - =
(Ve>0) (INe€N), Vn> ]2n+3 2|<5
Observe that
s — 2l =
2n+3 2 4n+6
Take € > 0. We have
- 1|<s & S o o p>30
- = n .
2n+3 2 4n + 6 4e

By the Archimedean Principle, there exists N € N such that N > 32665. Hence for all

nZN,|ﬁ—%]<£.
(b). We want to prove that
(Ve >0) (IN€eN), Vn>N |

Take € > 0. Observe that

cos(1027%)  |cos(1027%)| 1
| n? = n? = n2
Hence
LN |cos(102”2)|< L.
n>— — — .
NG n? ~ n?

It is enough to choose N € N with N > % Such N exists by the Archimedean Principle.

2. Find the limit of the following sequences

1 (1 —mn)

(1) an=1+ (g)na (47) an = m

Answer. (1) From the lecture notes we know that limn%oo(%)” = 0. By the Algebra
of Limits,
Jm o =1,
1



(7i) We simplify

_ T T G-
“”_(1+n2)9n_(§> n( +1)

From the lecture notes, we have that limn_mo(g)” =0, lim,— oo % = 0. By the algebra

of limits, we conclude that

(1 —mn)
im —————- =
n=oo (1 4 n2)9n

3. Let (ap)nen be a sequence of positive numbers such that lim, o a, = L > 0.
a. Prove that (\/an)nen converges to v/L.
b. Prove that (/1 4 a2 ),en converges to V1 + L2

Answer. a. For any x,y > 0 it holds

Vo =yl < y/lz—yl.

This fact has been proven in the Problem Sheet Week 3.

Van — VI < \/lan - LI.

Since lim,, o a,, = L, for any € > 0 there exists N € N so that for any n > N

Hence, for all n,

la, — L| < 2.
We have that: for any € > 0 there exists N € N so that for any n > N
|Van — VL] < Ve? =¢.
This concludes the proof.
b. In Problem Sheet Week 3 we proved that, for any z,y € R
VIt 22— /1+92 < |z -yl
Thus, for any n, we have
IW1+a2 —V1+L2<la, - L.
Since limy,_, a, = L, for any € > 0 there exists N € N so that for any n > N
lan, — L| < e.
We have that: for any € > 0 there exists NV € N so that for any n > N

W1+aZ —V1+ L% <e.



This concludes the proof.

4. Let A C R be a set bounded above, and A # (). Show that there exists a sequence

(an)nen such that a, € A for any n € N and lim,,_,oc a,, = sup(A).

Answer.  Since A is bounded above, and A # (), sup(A) exists by the Completeness
Axiom. By definition of sup(A), for any n € N there exists a,, € A so that

1
sup(A) — - < ay.

~—

Moreover, for all n € N, a,, < sup(A). Hence, for all n

sup(A) — = < a, < sup(A).
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We claim that lim,,_, a, = sup(A). Observe that

1
0 <sup(4) —a, < —.
n

By the Archimedean Postulate, for any ¢ there exists N € N so that N > % Therefore,
for any n > N,
lan, —sup(A4)| < e.
Hence lim,, o a,, = sup(A).
Homework.

1. Using the definition of limits, prove that

2n+3 2 i n
im =—, b. lim —— =
n—oo3n—7 3 n—00 3n? + 2

a.

Answer. a. We need to show that for any real number € > 0 there exists an integer

number N so that, for any n > N then

’271—{—3 2’<
—-l<e
3n—7 3
We compute
2n+3 2 23

3In—7 3 3Bn-T7)
Hence the inequality gets rewritten as

23 23
— <& 3n-T> —.
Sn_7 ~cTBn-T> 5

We can now assume that n > 3, so [3n — 7| = 3n — 7. Thus

23 < o3 7> 23 - S 21e + 23
—<c n— — n>-—.
3|13n — 17| 3e 9



By the Archimedean Postulate, given any ¢ > 0 there exists N € N so that N >

. This concludes the proof.

max(3, 714‘56?69)

b. We want to prove that

n

v 0 dN € N Yn > N )
(6> ) ( € )a n = |37’L2—|—2‘<€
Take € > 0. Observe that

‘ n ’<l_i

3n2+2'~ 3n2  3n
Hence

> ! = | " | < ! <
n> — —_— — < €.
3¢ 3n24+2' = 3n

It is enough to choose N € N with N > 3—16 Such N exists by the Archimedean Principle.

2. Find the limit of the following sequences

. T ’ 1-(3)"
(1) ap=vVn?P+1—n, (i) a,= 3

Tt a3 -9

[Hint for (7): calculate first (vn?+1—n)(vVn?>+1+n).]

Answer. (i) We rationalise

_ i _(Vn?P+1-n)(Vn?2+1+n) 1
ap=vn-+1—n= = .
vn2+1+n n?+1+n

We factor out n in the denominator

1 1 1
n — /n2+1+n_n( /1“‘7}2_}_1)

From the lecture notes, we have that lim,, % = 0. By the algebra of limits, lim, 7712 =

lim,, o0 % . % = 0. We claim that lim,, . /1 + 7712 = 1. Indeed, given € > 0, one has

a

1 1 1 1
Wi+ 5 -1<e & (Jl+5-1<e &4 /l+5<l+e & 1+ <(1+¢)?
n n n n

1
V2 + &2

For any € > 0, by the Archimedean postulate there exists N € N so that N >
Thus, for any n > N, it holds

& o n>

1
V2e+e2’

| 1+1 1] <
— E.
n2

This proves that limy, o /1 + # = 1. By the algebra of limits, we get that

1 1 1

lim {/14+ —4+1=2, lim ( —

n—00 n2 n—00 1+1+1) 2
\/ n2



and

1 1 1
dim_ on = lim ——ee— nbr%on(ﬁlﬁl) 0
n

(73) From the lecture notes, we have that limn%oo(%)” = 0. By the algebra of limits,

we get limy, o0 1 — (%)" = 1. Besides, since lim,_so % = 0, by the Algebra of Limits we

have lim,, oo ™% = limy 0o n % = 0 and lim, oo n 4 +n"3 —9 = —9.
Using again the Algebra of Limits we get
1—(3)" ] 1

li = lim | ———2— =
im a, im irn-3_9

n—oo n—oo

9

Let (an)nen be a sequence of real numbers, such that lim, . a, = 1. Using the
1
definition of limits, prove that lim, . a3 = 1.

Answer. We want to prove that
1
(Ve>0) (INeN) Yn>N J|as — 1] <e.

Recall that

-y = (x—y)(x2+xy+y2) Vx,y € R.

Hence
2 1

1 2 1
an — 1= (a3 —1)(an +ai +1).
Let € > 0. Since lim, o an, = 1,

1
IN; €N VYn>N; |an—1|<§,

and
ANy € N Vn > Ny |an—1|<€.

Observe that |a, — 1| < % & % <ap < %, thus Vn > Nj we have that a,, > 0.
Take N = max(Ni, N2). Then Vn > N

1 anp — 1 an — 1
\aﬁ;—l\:]g"l | = gfnl| <la, —1| <e.
an +an +1  ajp +ap +1
This concludes the proof.
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