1.

MA10207 Analysis 1 - Semester 1, 2021/22
Problem Sheet Week 3 - Solutions

Let A be a non-empty bounded set in R. Let the diameter of A be defined as
diam(A) :=sup{|z —y| : =,y € A}.

(a.) Prove that the number sup(A) — inf(A) is an upper bound for the set {|z — y| :
xz,y € A}

(b.) Prove that diam(A) < sup(A) — inf(A).

(c.) Prove that diam(A) = sup(A) — inf(A).

Answer. (a.) Since A is a non-empty bounded set in R, sup(A) and inf(A) exist by
the Completeness Axiom. Let z,y € A, and assume that x > y (otherwise we exchange

the role of = and y). By definition of sup(A) and inf(A), we have
x <sup(4), y>inf(A4).
Hence
|t —y| =2 —y <sup(4) —inf(4) V z,y€ A

Thus sup(A4) — inf(A) is an upper bound for the set {|x —y| : =,y € A}.
(b.) By definition, diam(A) is the least upper bound of the set {|x —y| : z,y € A},

hence
diam(A) = sup{|z —y| : =,y € A} <sup(A) —inf(A).

(c.) It is enough to prove that diam(A) > sup(A) — inf(A).
By contradiction, assume that diam(A) < sup(A) — inf(A). Hence there exists e > 0
so that

diam(A) < sup(A) —inf(A) — 2e = sup(A) — e — (inf(A) + ).
By the definitions of sup(A) and inf(A), there exist z € A and y € A such that
sup(A) —e <z, inf(4)+ec>y.
Substituting in (1), we get
diam(A) < sup(A) —e — (inf(A) +¢) <z —y < |z — y| < diam(A),

which is impossible. This implies that diam(A) > sup(A) — inf(A).
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2.

Solve the inequalities

1 1
a. —+
r x+1

> 0; b. |z —1]4 |z —2|>5.

Answer. a. We write

1 1 20 +1
-+ >0 & @ ———>0.
x x+1 x(x+1)

For the values £ = 0 or x = —1 the inequality is meaningless so we rule these values out
straight away:.

(i) Consider only x < —1. Then z < 0 and z +1 < 0, thus z(z + 1) > 0 and

féih >0 & 2x4+1>0& > —%, which is impossible for this case.
(ii) Consider only —1 < z < 0. Then z(z+1) < 0 and f(fcﬁ) >0 & 2z+1<0&

T < —%. So we have solutions for the z under consideration exactly when —1 < z < —%.

(iii) Consider only & > 0. Then z(z +1) >0 asin (i) and 745 >0 & 2> -3

So the solutions for those  under consideration are exactly x > 0.

It follows that the solution set is exactly those z such that either —1 < o < —% or

x > 0.
b. Consider only x < 1. In this case
lx—1=1—-2, |z-2|=2-2

hence the inequality becomes 1 —x+2 -2z >5<& -2r>2<¢« 1z < —1. So we
have solutions for the z under consideration exactly when z < —1.

Consider now only 1 < x < 2. In this case
le—1=2—-1, |[z—-2|=2—-2

hence the inequality becomes z — 1+ 2 —x > 5 < 1 > 5, which is impossible. So we
have no solutions for the z under consideration.

Consider now only x > 2. In this case
lt—1l=2z—-1, |zr—2|=2-2

hence the inequality becomes z —1+x —2 > 5 & 2x > 8 & x > 4. So we have solutions
for the  under consideration exactly when = > 4.

It follows that the solution set is exactly (—oo, —1] U [4, 00).



3. a. Show that

2zy < 22 412, V z,yeR

and that equality holds only if x = y.
b. Show that

\/g—i-\/gﬁx/m—i—yﬁﬁ—i—\/@, vV x,y>0.
c. Prove that

’\/1+z2 — /142

§|$—y|, v xayER'

Answer.  Proof of a. For any z,y € R, (z — y)? > 0, and equality holds only if
x =1y. Thus

x? —2zy +9y> >0, Vr,y.

Rearranging the terms we get
22y < 2 + 37,

and equality holds only if z = y.

Proof of b.  We first prove \/z +y < /z +,/y. We have

(Vo +y)° =z+y+2y/zy >z +y.
Taking the square root in both sides we obtain
Vit+y <Vr+./y.
We next prove \/% + \/g <z +y. We have

2
T [y x oy T [y r oy Ty
JE LYYy 22 Y e 2 o 2 Y T Y ,
( 2+\/g) s T3y S gttty =oty

by part a.

Taking the square root of both sides, we get the wanted inequality.

Proof of c.  Let us assume first that > y. Thus v/1+ 22 — /1 +y2 > 0 and the

inequality to prove becomes

Vitaz—\/1+y2<zx—y.



We have
2
0< <\/1+x2—,/1+y2> <1422 +1+y% —2vV1+ 22 /1 442

:2+x2+y2—2\/1+x2+y2+x2y2.

The inequality in part a. says that

2ry < a2 + y? = —2\/1 + 22 +y? + 22y? < —24/1 + 22y + 22y? = —2(1 + xy),

hence

2
0< <\/1—|—m2—\/1—|—y2> <1422 +149%—2vV1+22\/1+ 2

:2+x2+y2—2\/1+x2+y2+1:2y2

<242 +y° 21+ ay) = (z —y)*

Thus we conclude that v1+ 22 — /1 +92 < x —y. The case z < y can be treated
similarly.
Homework.

1. Solve the inequalities

z—1
o1 <1, b -1 -3> -1.
a Sorr1 S |z |
Answer. a. We consider the two inequalities separately. Therefore, we write
. . 1 . -1
the set of solutions in the form AN B, where A = {z € R\ {-3} : =1 < 5==5} and

B={zeR\{-3}:1> &%}
Find A. We have

r—1 r—1 r—14+2x+1
>-1 < 1>0 & @ ——F—>0.
20 +1 — 2:B—1—1Jr - 2z +1 -

Ifz> —%, this is equivalent to

Ifx < —%,

We thus conclude that A = (—oco, —3) U [0, 00).
Find B. We have

m—1<1 - r—1 1<0 o x—1—2x—1<0
20+ 1 — 2z + 1 - 2z + 1 -




If x > —%, this is equivalent to
—x—2<0 & x>-2.

Ifz< —%,

—xr—2>20 & x<-2.

Thus B = (—o00, —2] U (—3, 00).

We conclude that AN B = (—o0, —2] U [0, 00).

b.  We solve |z — 1| > 2.

If x > 1, the inequality becomes x — 1 > 2, x > 3. Hence in this region the inequality
is satisfied for x > 3.

If z < 1, the inequality becomes —x + 1 > 2, z < —1. Hence in this region the
inequality is satisfied for x < —1.

We conclude that the solution set is (—oo, —1) U (3, 00).
. Let A C B be non-empty subsets of R.
a. Prove that if B has a supremum, then A has a supremum and sup(A) < sup(B).

<in

£(A).

b. Prove that if B has an infimum, then A has an infimum and inf(B)

Answer.

a. If s =sup(B) then for all b € B, b < s. Since A C B, for every a € A, we have
that a € B and then a < s. Thus s is an upper bound for A. By the Completeness
Axiom, sup(A) exists. Moreover, sup(A) < s, by the least upper bound property.

b. If ¢ = inf(B) then for all b € B, ¢ <b. Since A C B, for every a € A, a € B and
hence ¢ < a. Thus / is a lower bound for A. By the Completeness Axiom, inf(A) exists.
Moreover, inf(A) > ¢ by the definition of infimum.

Prove that

Vo =yl <y/lz =yl

for all x,y > 0.
Answer. Let us assume that > y. Then the inequality to prove becomes
Vo =y <Vr—y.

We have

(VT — i) = +y—2Vay



Since v/x > /y, we have —2,/z,/y < —2y. We insert this information in the inequality

above and obtain

Ve—vyl=zty-2Vayy<z—y= Vo y<Vo-y.

The case = < y can be treated in a similar way.

MM



