
MA10207 Analysis 1 - Semester 1, 2021/22

Problem Sheet Week 3 - Solutions

1. Let A be a non-empty bounded set in R. Let the diameter of A be defined as

diam(A) := sup {|x− y| : x, y ∈ A}.

(a.) Prove that the number sup(A) − inf(A) is an upper bound for the set {|x − y| :

x, y ∈ A}.

(b.) Prove that diam(A) ≤ sup(A)− inf(A).

(c.) Prove that diam(A) = sup(A)− inf(A).

Answer. (a.) Since A is a non-empty bounded set in R, sup(A) and inf(A) exist by

the Completeness Axiom. Let x, y ∈ A, and assume that x ≥ y (otherwise we exchange

the role of x and y). By definition of sup(A) and inf(A), we have

x ≤ sup(A), y ≥ inf(A).

Hence

|x− y| = x− y ≤ sup(A)− inf(A) ∀ x, y ∈ A.

Thus sup(A)− inf(A) is an upper bound for the set {|x− y| : x, y ∈ A}.

(b.) By definition, diam(A) is the least upper bound of the set {|x− y| : x, y ∈ A},

hence

diam(A) = sup{|x− y| : x, y ∈ A} ≤ sup(A)− inf(A).

(c.) It is enough to prove that diam(A) ≥ sup(A)− inf(A).

By contradiction, assume that diam(A) < sup(A)− inf(A). Hence there exists ε > 0

so that

(1) diam(A) < sup(A)− inf(A)− 2ε = sup(A)− ε− (inf(A) + ε).

By the definitions of sup(A) and inf(A), there exist x̄ ∈ A and ȳ ∈ A such that

sup(A)− ε < x̄, inf(A) + ε > ȳ.

Substituting in (1), we get

diam(A) < sup(A)− ε− (inf(A) + ε) < x̄− ȳ ≤ |x̄− ȳ| ≤ diam(A),

which is impossible. This implies that diam(A) ≥ sup(A)− inf(A).
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2. Solve the inequalities

a.
1
x

+ 1
x + 1 > 0; b. |x− 1|+ |x− 2| ≥ 5.

Answer. a. We write

1
x

+ 1
x + 1 > 0 ⇔ 2x + 1

x(x + 1) > 0.

For the values x = 0 or x = −1 the inequality is meaningless so we rule these values out

straight away.

(i) Consider only x < −1. Then x < 0 and x + 1 < 0, thus x(x + 1) > 0 and
2x+1

x(x+1) > 0 ⇔ 2x + 1 > 0⇔ x > −1
2 , which is impossible for this case.

(ii) Consider only −1 < x < 0. Then x(x+1) < 0 and 2x+1
x(x+1) > 0 ⇔ 2x+1 < 0⇔

x < −1
2 . So we have solutions for the x under consideration exactly when −1 < x < −1

2 .

(iii) Consider only x > 0. Then x(x + 1) > 0 as in (i) and 2x+1
x(x+1) > 0 ⇔ x > −1

2 .

So the solutions for those x under consideration are exactly x > 0.

It follows that the solution set is exactly those x such that either −1 < x < −1
2 or

x > 0.

b. Consider only x ≤ 1. In this case

|x− 1| = 1− x, |x− 2| = 2− x

hence the inequality becomes 1 − x + 2 − x ≥ 5 ⇔ −2x ≥ 2 ⇔ x ≤ −1. So we

have solutions for the x under consideration exactly when x ≤ −1.

Consider now only 1 < x ≤ 2. In this case

|x− 1| = x− 1, |x− 2| = 2− x

hence the inequality becomes x − 1 + 2 − x ≥ 5 ⇔ 1 ≥ 5, which is impossible. So we

have no solutions for the x under consideration.

Consider now only x > 2. In this case

|x− 1| = x− 1, |x− 2| = x− 2

hence the inequality becomes x− 1 + x− 2 ≥ 5⇔ 2x ≥ 8⇔ x ≥ 4. So we have solutions

for the x under consideration exactly when x ≥ 4.

It follows that the solution set is exactly (−∞,−1] ∪ [4,∞).



3. a. Show that

2xy ≤ x2 + y2, ∀ x, y ∈ R

and that equality holds only if x = y.

b. Show that√
x

2 +
√

y

2 ≤
√

x + y ≤
√

x +√y, ∀ x, y > 0.

c. Prove that∣∣∣∣√1 + x2 −
√

1 + y2
∣∣∣∣ ≤ |x− y|, ∀ x, y ∈ R.

Answer. Proof of a. For any x, y ∈ R, (x − y)2 ≥ 0, and equality holds only if

x = y. Thus

x2 − 2xy + y2 ≥ 0, ∀x, y.

Rearranging the terms we get

2xy ≤ x2 + y2,

and equality holds only if x = y.

Proof of b. We first prove
√

x + y ≤
√

x +√y. We have

(
√

x +√y)2 = x + y + 2√xy ≥ x + y.

Taking the square root in both sides we obtain

√
x + y ≤

√
x +√y.

We next prove
√

x
2 +

√
y
2 ≤
√

x + y. We have

(√
x

2 +
√

y

2

)2
= x

2 + y

2 + 2
√

x

2

√
y

2 ≤︸︷︷︸
by part a.

x

2 + y

2 + x

2 + y

2 = x + y.

Taking the square root of both sides, we get the wanted inequality.

Proof of c. Let us assume first that x ≥ y. Thus
√

1 + x2 −
√

1 + y2 > 0 and the

inequality to prove becomes

√
1 + x2 −

√
1 + y2 ≤ x− y.



We have

0 ≤
(√

1 + x2 −
√

1 + y2
)2
≤ 1 + x2 + 1 + y2 − 2

√
1 + x2

√
1 + y2

= 2 + x2 + y2 − 2
√

1 + x2 + y2 + x2y2.

The inequality in part a. says that

2xy ≤ x2 + y2 ⇒ −2
√

1 + x2 + y2 + x2y2 ≤ −2
√

1 + 2xy + x2y2 = −2(1 + xy),

hence

0 ≤
(√

1 + x2 −
√

1 + y2
)2
≤ 1 + x2 + 1 + y2 − 2

√
1 + x2

√
1 + y2

= 2 + x2 + y2 − 2
√

1 + x2 + y2 + x2y2

≤ 2 + x2 + y2 − 2(1 + xy) = (x− y)2.

Thus we conclude that
√

1 + x2 −
√

1 + y2 ≤ x − y. The case x ≤ y can be treated

similarly.

Homework.

1. Solve the inequalities

a. − 1 ≤ x− 1
2x + 1 ≤ 1, b. |x− 1| − 3 > −1.

Answer. a. We consider the two inequalities separately. Therefore, we write

the set of solutions in the form A ∩ B, where A = {x ∈ R \ {−1
2} : −1 ≤ x−1

2x+1} and

B = {x ∈ R \ {−1
2} : 1 ≥ x−1

2x+1}.

Find A. We have

x− 1
2x + 1 ≥ −1 ⇔ x− 1

2x + 1 + 1 ≥ 0 ⇔ x− 1 + 2x + 1
2x + 1 ≥ 0.

If x > −1
2 , this is equivalent to

3x ≥ 0 ⇔ x ≥ 0.

If x < −1
2 ,

3x ≤ 0 ⇔ x ≤ 0.

We thus conclude that A = (−∞,−1
2) ∪ [0,∞).

Find B. We have

x− 1
2x + 1 ≤ 1 ⇔ x− 1

2x + 1 − 1 ≤ 0 ⇔ x− 1− 2x− 1
2x + 1 ≤ 0.



If x > −1
2 , this is equivalent to

−x− 2 ≤ 0 ⇔ x ≥ −2.

If x < −1
2 ,

−x− 2 ≥ 0 ⇔ x ≤ −2.

Thus B = (−∞,−2] ∪ (−1
2 ,∞).

We conclude that A ∩B = (−∞,−2] ∪ [0,∞).

b. We solve |x− 1| > 2.

If x ≥ 1, the inequality becomes x− 1 > 2, x > 3. Hence in this region the inequality

is satisfied for x > 3.

If x < 1, the inequality becomes −x + 1 > 2, x < −1. Hence in this region the

inequality is satisfied for x < −1.

We conclude that the solution set is (−∞,−1) ∪ (3,∞).

2. Let A ⊆ B be non-empty subsets of R.

a. Prove that if B has a supremum, then A has a supremum and sup(A) ≤ sup(B).

b. Prove that if B has an infimum, then A has an infimum and inf(B) ≤ inf(A).

Answer.

a. If s = sup(B) then for all b ∈ B, b ≤ s. Since A ⊆ B, for every a ∈ A, we have

that a ∈ B and then a ≤ s. Thus s is an upper bound for A. By the Completeness

Axiom, sup(A) exists. Moreover, sup(A) ≤ s, by the least upper bound property.

b. If ` = inf(B) then for all b ∈ B, ` ≤ b. Since A ⊆ B, for every a ∈ A, a ∈ B and

hence ` ≤ a. Thus ` is a lower bound for A. By the Completeness Axiom, inf(A) exists.

Moreover, inf(A) ≥ ` by the definition of infimum.

3. Prove that

|
√

x−√y| ≤
√
|x− y|

for all x, y ≥ 0.

Answer. Let us assume that x ≥ y. Then the inequality to prove becomes

√
x−√y ≤

√
x− y.

We have

(
√

x−√y)2 = x + y − 2
√

x
√

y



Since
√

x ≥ √y, we have −2
√

x
√

y ≤ −2y. We insert this information in the inequality

above and obtain

(
√

x−√y)2 = x + y − 2
√

x
√

y ≤ x− y ⇒
√

x−√y ≤
√

x− y.

The case x ≤ y can be treated in a similar way.
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